Si vous le faites avec 1 inconnu je vous remercie. Marc vide sa tirelire et constate qu'il possède 21 billets et 10 pièces. Il a des billets de 5€ et des billet
Mathématiques
menzo7123
Question
Si vous le faites avec 1 inconnu je vous remercie.
Marc vide sa tirelire et constate qu'il possède 21 billets et 10 pièces. Il a des billets de 5€ et des billets de 10€ et il a 7 pièces de 1€ et les autres sont de 2€. Il possède en tout 138€. Combien de billets de chaque sorte possède-t-il
je vous remercie infiniment
Marc vide sa tirelire et constate qu'il possède 21 billets et 10 pièces. Il a des billets de 5€ et des billets de 10€ et il a 7 pièces de 1€ et les autres sont de 2€. Il possède en tout 138€. Combien de billets de chaque sorte possède-t-il
je vous remercie infiniment
2 Réponse
-
1. Réponse bladekowal
il a 10 pièces
7de 1 et donc 3 de 2
donc 7*1+3*2=13€ de pieces
138-13=125€ en billet
soit x le nombre de billet de 5 et y de 10
x+y=21
x*5+y*10=125
x=21-y
(21-y)*5+y*10=125
105-5y+10y=125
5y=125-105=20
y=4
x=21-y=21-4=17
il a 17 billet de 5 et 4 billet de 10
-
2. Réponse Anonyme
Bonsoir,
appelons x le nombre de billets de 5 €
le nombre de billets de 10 € est donc : 21 - x
il a 7 pièces de 1 € donc 7 € en pièces de 1
donc, il a 10-7 = 3 pièces de 2 € donc 6 € en pièces de 2 €
en tout il a 138 €
on a donc l'équation suivante :
5x + 10(21-x) + 7 + 6 = 138
⇒ 5x + 210 - 10x + 7 + 6 = 138
⇒ -5x = 138 - 210 - 7 - 6 = -85
⇒ x = (-85) ÷ (-5) = 17
Il a donc 17 billets de 5 € et 21-17 = 4 billets de 10 €
vérification : 17×5 + 4×10 + 7×1 + 3×2 = 138