Mathématiques

Question

Bonjour, pouvez vous m'aider pour cet exercice sur le théorème de Thalès.
Merci d'avance
Bonjour, pouvez vous m'aider pour cet exercice sur le théorème de Thalès. Merci d'avance

1 Réponse

  • Réponse :

    Explications étape par étape

    Bonjour

    AC = 48 cm

    BC = 60 cm

    AE = 1,2 m = 120 cm

    BD = 1,5 m = 150 cm

    FH = GH = 30 cm

    HI = 34 cm

    IJ = 50 cm

    Deux droites sécantes FJ et GI en H et on veut démontrer que 2 droites sont parallèles donc réciproque de thales qui dit que si :

    HF/HJ = HG/HI alors les droites FG et IJ sont parallèles

    30/HJ = 30/34

    HJ = 30 x 34 / 30 = 34 cm

    HJ devrait être égal à 34 cm pour que le tabouret soit parallèle au sol. Il manque une donnée pour confirmer le parallélisme au sol

    Deux droites sécantes AE et BD en C et on veut démontrer que 2 droites sont parallèles donc réciproque de thales qui dit que si :

    CA/CE = CB/CD alors les droites AB et DE sont parallèles

    ÇA/CE = 48/(AE - AC)

    ÇA/CE = 48/(120 - 48)

    CA/CE = 48/72

    ÇA/CE = (2 x 24)/(24 x 3)

    CA/CE = 2/3

    CB/CD = 60/(BD - BC)

    CB/CD = 60/(150 - 60)

    CB/CD = 60/90

    CB/CD = (2 x 30)/(3 x 30)

    CB/CD = 2/3

    Comme CA/CE = CB/CD alors AB et DE sont parallèles