Mathématiques

Question

Bonsoir est ce que quelqu’un peut m’aider à faire ces exercices?(le premier est « compléter ces développement »)
Bonsoir est ce que quelqu’un peut m’aider à faire ces exercices?(le premier est « compléter ces développement »)

2 Réponse

  • Réponse :

    1) Avant de commencer il te faut connaître les identités remarquables :

    (a + b)² = a² +2ab +b²

    (a - b)² = a² - 2ab + b²

    (a-b) (a+b) = a² - b²

    (x+6)² = x² + 2 x (x) x 6 + 6 ² = x² + 12x + 36

    (a-7)² = a² - 2 x a x (-7) + 7² = a² - 14a + 49

    (x - 3) (x + 3) = x² - 3² = x² - 9

    2) a. (5y + 4)² = (5y)² +2 x 5y x 4 + 4²

                          =   25y² + 40y + 16

       b. (3b - 5)² = (3b)² - 2 x 3b x (-5) + 5²

                         =   9b² - 30b  + 25

       c. (7 + 9x) (7 - 9x) = 7² - (9x)²

                                    = 49 - 81x²

    6) Sophie a raison :

    Tu peux prendre deux exemples pour expliquer.

    - Je prends le chiffre 7 par exemple ce qui donne :

                       7

         (+4)  11            3  (-4)

                      33  (11 x 3)

    et le carré de 7 qui est 49 (7 x 7) moins 16 = 33 (résultat de la fin du programme)

    - Je prends le chiffre 18 par exemple ce qui donne :

                          18

       (18 +4)   22      14    (18-4)

                         308  (22x14)

    et le carré de 18 qui est 324 (18 x 18) moins 16 = 308 (résultat de la fin du programme)

    Explications étape par étape

  • Réponse :(X + 6)^2 = X^2 + 2 x X x 6 + 6^2

    Explications étape par étape

    = X^2 + 12X + 36

    Tu dois développer en utilisant l'identité remarquable :

    (a+b)^2 = a^2 + 2ab + b^2

    (a-b)^2 = a^2 - 2ab + b^2

    (a+b)(a-b) = a^2 - b^2

    :)